Affiliation:
1. Wayne State University, 4815 Fourth Street, Detroit, MI 48201
Abstract
In this paper, we present an integrated collaborative modular architecture method for medical device design and development. The methodology is focused on analyzing the input of stakeholder data from existing products and components to achieve an optimal number of modules. The methodology starts by defining a product’s functional and physical decompositions. Product parameters are selected such as quality, reliability, ease of development, and cost. These are prioritized using analytical hierarchy process (AHP) to determine the medical device manufacturers’ focus area. The parameters’ subsequent metrics are selected for performance requirements. Next, we evaluate the candidate modules by acquiring stakeholder data and converting them to crisp values by applying the Sugeno fuzzy-based method. Finally, we determine the subsequent optimal module values using a multi-optimization goal programming model. We present here a proof of concept using a typical glucometer. The implication of this work is the determination of the optimal number of product modules based on stakeholder constraints. Hence, an original equipment manufacturer (OEM) can work on fewer components per module without adversely affecting the integrity, quality, and reliability of the final product. Next is the improved quality of patient care by enabling cost reductions in product design and development, thereby improving patient safety. This methodology helps reduce product cycle time, thereby improving market competitiveness among other factors.
Subject
Biomedical Engineering,Medicine (miscellaneous)
Reference36 articles.
1. Integrated Fuzzy Logic Based Model for Product Modularization During Concept Development Phase;Nepal;Int. J. Prod. Econ.
2. Modular Architecture for Medical Device Design & Manufacturing;Aguwa
3. Collaborative Architecture Framework for the Design & Manufacturing of Medical Devices;Aguwa
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献