Integrated Fuzzy-Based Modular Architecture for Medical Device Design and Development

Author:

Aguwa Celestine C.1,Monplaisir Leslie1,Sylajakumari Prasanth Achuthamenon1,Muni Ram Kumar1

Affiliation:

1. Wayne State University, 4815 Fourth Street, Detroit, MI 48201

Abstract

In this paper, we present an integrated collaborative modular architecture method for medical device design and development. The methodology is focused on analyzing the input of stakeholder data from existing products and components to achieve an optimal number of modules. The methodology starts by defining a product’s functional and physical decompositions. Product parameters are selected such as quality, reliability, ease of development, and cost. These are prioritized using analytical hierarchy process (AHP) to determine the medical device manufacturers’ focus area. The parameters’ subsequent metrics are selected for performance requirements. Next, we evaluate the candidate modules by acquiring stakeholder data and converting them to crisp values by applying the Sugeno fuzzy-based method. Finally, we determine the subsequent optimal module values using a multi-optimization goal programming model. We present here a proof of concept using a typical glucometer. The implication of this work is the determination of the optimal number of product modules based on stakeholder constraints. Hence, an original equipment manufacturer (OEM) can work on fewer components per module without adversely affecting the integrity, quality, and reliability of the final product. Next is the improved quality of patient care by enabling cost reductions in product design and development, thereby improving patient safety. This methodology helps reduce product cycle time, thereby improving market competitiveness among other factors.

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Reference36 articles.

1. Integrated Fuzzy Logic Based Model for Product Modularization During Concept Development Phase;Nepal;Int. J. Prod. Econ.

2. Modular Architecture for Medical Device Design & Manufacturing;Aguwa

3. Collaborative Architecture Framework for the Design & Manufacturing of Medical Devices;Aguwa

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3