Numerical Solutions of Three-Dimensional Non-Grey Gas Radiative Transfer Using the Statistical Narrow-Band Model

Author:

Liu F.1

Affiliation:

1. Combustion Technology, Institute for Chemical Process and Environmental Technology, National Research Council, Ottawa, ON K1A 0R6, Canada

Abstract

Three-dimensional non-grey gas radiation analyses were conducted using the statistical narrow-band model along with up-dated band parameters. The exact narrow-band averaged radiative transfer equation was solved using a ray-tracing method. Accurate numerical results were presented for non-grey real gas radiative transfer in a three-dimensional rectangular enclosure containing (i) an isothermal pure water vapor at 1000 K and 1 atm, (ii) an isothermal and inhomogeneous H2O/N2 mixture at 1000 K and 1 atm, and (iii) a nonisothermal and homogeneous mixture of CO2/H2O/N2 at 1 atm.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling the radiation of non-gray participating media with steady discrete unified gas kinetic scheme;International Journal of Heat and Mass Transfer;2024-10

2. Implementation of spectral line weighted-sum-of-gray-gases (SLW) property model in open source software;Proceeding of Proceedings of the 27th National and 5th International ISHMT-ASTFE Heat and Mass Transfer Conference December 14-17, 2023, IIT Patna, Patna-801106, Bihar, India;2024

3. A review of thermal exposure and fire spread mechanisms in large outdoor fires and the built environment;Fire Safety Journal;2023-10

4. Approaches to radiative heat transfer simulation in a cavity above melt;E3S Web of Conferences;2023

5. Radiative Heat Transfer in Three-Dimensional Geometries;Radiative Heat Transfer in Participating Media;2022-09-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3