Study on Unsteady Aerodynamic Force of Turbine Blade With Different Mass Flow

Author:

Lan Jibing1,Xie Yonghui1,Zhang Di1

Affiliation:

1. Xi’an Jiaotong University, Xi’an, Shaanxi, China

Abstract

The traditional turbomachinery design systems are always based on the assumption of steady or quasi-steady flows. However, unsteady flows such as wake flow, separated flow and shedding vortices are the main factors inducing the excitation force on turbine blade which leads to high cycle fatigue failure of blade. In this paper, the three-dimensional, time dependent, Reynolds-Averaged Navier-Stokes (RANS) equations were resolved using a commercial program CFX based on finite volume method. The unsteady flow fields of three mass flow cases (design case, 110% design mass flow and 85% design mass flow) in a one-and-a-half stage axial turbine (stator/rotor/stator) were investigated in detail and then the unsteady aerodynamic force on the rotational blade was obtained. Frequencies of unsteady disturbances and excitation force factors were obtained by spectrum analysis. It can be seen clearly that the excitation factors at 110% mass flow case are larger than that at the design case. On the other side, the unsteady aerodynamic force on the rotational blade at 85% mass flow case is quite different from the design case. There are two peaks during a stator passing period and the dominate frequency of the tangential blade force is 6000Hz due to large amount of negative incidence angle. The 6000Hz component tangential aerodynamic force amplitude is 6.533N, which is 5.93 times of that at design case and 2.92 times of that at 110% mass flow case. Because of the large amplitude, the unsteady aerodynamic force at small mass flow case is necessary to be taken into account in the forced vibration analysis of blade.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of Effects of Potential Field Interaction and Wake Interaction on Unsteady Force for Buckets;International Journal of Gas Turbine, Propulsion and Power Systems;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3