An Elastic-Plastic Finite Element Model of Rolling Contact, Part 1: Analysis of Single Contacts

Author:

Bhargava V.1,Hahn G. T.1,Rubin C. A.1

Affiliation:

1. Department of Mechanical and Materials Engineering, Vanderbilt University, Nashville, Tenn. 37235

Abstract

This paper describes a two-dimensional (plane strain) elastic-plastic finite element model of rolling contact that embodies the elastic-perfectly plastic, cycle and amplitude-independent material of the Merwin and Johnson theory, but is rigorous with respect to equilibrium and continuity requirements. The rolling contact is simulated by translating a semielliptical pressure distribution. Both Hertzian and modified Hertzian pressure distributions are used to estimate the effect of plasticity on contact width and the continuity of the indentor-indentation interface. The model is tested for its ability to reproduce various features of the elastic-plastic indentation problem and the stress and strain states of single rolling contacts. This paper compares the results derived from the finite element analysis of a single, frictionless rolling contact at p0/k = 5 with those obtained from the Merwin and Johnson analysis. The finite element calculations validate basic assumptions made by Merwin and Johnson and are consistent with the development of “forward” flow. However, the comparison also reveals significant differences in the distribution of residual stress and strain components after a single contact cycle.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3