The Biomechanical Effect of Torsion on Humeral Shaft Repair Techniques for Completed Pathological Fractures

Author:

Al-Jahwari Ahmed1,Schemitsch Emil H.2,Wunder Jay S.3,Ferguson Peter C.3,Zdero Rad4

Affiliation:

1. Martin Orthopaedic Biomechanics Lab,St. Michael’s Hospital, Toronto, ON, Canada, M5B-1W8

2. Division of Orthopaedic Surgery,St. Michael’s Hospital, Toronto, ON, Canada, M5B-1W8

3. University Musculoskeletal Oncology Unit and the Division of Orthopaedic Surgery,Department of Surgery, Mount Sinai Hospital, Toronto, ON, Canada, M5G-1X5

4. Martin Orthopaedic Biomechanics Lab,St. Michael’s Hospital, Toronto, ON, Canada, M5B-1W8; Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada, M5B-2K3

Abstract

In the presence of a tumor defect, completed humeral shaft fractures continue to be a major surgical challenge since there is no “gold standard” treatment. This is due, in part, to the fact that only one prior biomechanical study exists on the matter, but which only compared 2 repair methods. The current authors measured the humeral torsional performance of 5 fixation constructs for completed pathological fractures. In 40 artificial humeri, a 2-cm hemi-cylindrical cortical defect with a transverse fracture was created in the lateral cortex. Specimens were divided into 5 different constructs and tested in torsion. Construct A was a broad 10-hole 4.5-mm dynamic compression plate (DCP). Construct B was the same as A except that the screw holes and the tumor defect were filled with bone cement and the screws were inserted into soft cement. Construct C was the same as A except that the canal and tumor defect were filled with bone cement and the screws were inserted into dry cement. Construct D was a locked intramedullary nail inserted in the antegrade direction. Construct E was the same as D except that bone cement filled the defect. For torsional stiffness, construct C (4.45 ± 0.20 Nm/deg) was not different than B or E (p > 0.16), but was higher than A and D (p < 0.001). For failure torque, construct C achieved a higher failure torque (69.65 ± 5.35 Nm) than other groups (p < 0.001). For the failure angle, there were no differences between plating constructs A to C (p ≥ 0.11), except for B versus C (p < 0.05), or between nailing groups D versus E (p = 0.97), however, all plating groups had smaller failure angles than both nailing groups (p < 0.05). For failure energy, construct C (17.97 ± 3.59 J) had a higher value than other groups (p < 0.005), except for A (p = 0.057). Torsional failure always occurred in the bone in the classic “spiral” pattern. Construct C provided the highest torsional stability for a completed pathological humeral shaft fracture.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference41 articles.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3