Affiliation:
1. Mechanical Engineering Department, Texas A&M University, College Station, TX 77843 e-mail:
Abstract
The goal of this study is to provide pump users a simple means to predict a pump's performance change due to changing fluid viscosity. During the initial investigation, it has been demonstrated that pump performance can be represented in terms of the head coefficient, flow coefficient, and rotational Reynolds number with the head coefficient data for all viscosities falling on the same curve when presented as a function of ф*Rew−a. Further evaluation of the pump using computational fluid dynamics (CFD) simulations for wider range of viscosities demonstrated that the value of a (Morrison number) changes as the rotational Reynolds number increases. There is a sharp change in Morrison number in the range of 104<Rew<3*104 indicating a possible flow regime change between laminar and turbulent flow. The experimental data from previously published literature were utilized to determine the variation in the Morrison number as the function of rotational Reynolds number and specific speed. The Morrison number obtained from the CFD study was utilized to predict the head performance for the pump with known design parameters and performance from published literature. The results agree well with experimental data. The method presented in this paper can be used to establish a procedure to predict any pump's performance for different viscosities; however, more data are required to completely build the Morrison number plot.
Reference32 articles.
1. An Experimental Investigation of the Circumstances Which Determine Whether the Motion of Water Shall Be Direct or Sinuous and of the Law of Resistance in Parallel Channels;Philos. Trans. R. Soc. London,1883
2. Friction Factors for Pipe Flow;Trans. ASME,1944
3. Turbulent Flow in Pipes, With Particular Reference to Transition Region Between Smooth and Rough Pipe Laws;J. Inst. Civ. Eng. London,1939
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献