Probabilistic Analysis of Extreme Riser Responses for a Weather-Vaning FPSO in Tropical Cyclones

Author:

Armstrong Curtis1,Drobyshevksi Yuriy2,Chin Christopher1,Penesis Irene1

Affiliation:

1. The Australian Maritime College, University of Tasmania, Maritime Way, Newnham, Tasmania 7248, Australia e-mail:

2. WorleyParsons, Ltd. (INTECSEA, Pty. Ltd.), 600 Murray Street, West Perth 6005, Australia e-mail:

Abstract

The probability distributions of extreme responses of a flexible riser connected to a weather-vaning floating production storage and offloading (FPSO) are developed and investigated numerically for two tropical cyclones. Statistical properties of riser responses provide the foundation for response based analysis (RBA), a comprehensive approach for the prediction of extreme responses and design metocean conditions of offshore systems. The storm-based probabilistic analysis is applied to responses of flexible risers with the objective to develop their distributions in a storm and to determine their most probable maximum (MPM) values. An asymptotic form of the response distribution in a storm is formulated, which can be used in the random event, method of Tromans and Vandersohuren (1995, “Response Based Design Conditions in the North Sea: Application of a New Method,” Offshore Technology Conference, Houston, TX, May 1–4). The methodology is illustrated by two case studies for an FPSO in cyclonic storms at a location offshore Australia. Time domain simulations are employed to predict the FPSO motions, critical riser responses, and their probability distributions. It is shown that the maximum storm responses can be reproduced by governing “equivalent” metocean intervals with increased percentiles or inflated durations. Effects of different environmental excitation upon the risers and their impact on the statistical properties of responses are discussed, providing important insights for extension toward a multistorm RBA approach. The study also discusses issues with practices such as the analysis for a 3 h design event and presents observations on the variability of several types of responses, which reveal their environmental sensitivities.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3