Dynamic Analysis and Machine Learning Prediction of a Nonuniform Slot Air Bearing System

Author:

Wang Cheng-Chi1,Lin Chih-Jer2

Affiliation:

1. Department of Intelligent Automation Engineering/Graduate Institute of Precision Manufacturing, National Chin-Yi University of Technology , No. 57, Sec. 2, Zhongshan Road, Taiping District, Taichung 41170, Taiwan

2. Institute of Automation Technology, National Taipei University of Technology , No. 1, Sec. 3, Zhongxiao E Road, Taipei 10608, Taiwan

Abstract

Abstract Nonuniform slot air bearing (NSAB) systems have two major advantages, the external air supply and slot restrictor design, and their inherent multidirectional supporting forces and stiffness that provide excellent rotational stability. However, NSAB systems are prone to vibration from nonperiodic or chaotic motion caused by nonlinear pressure distribution within the gas film, gas supply imbalance, or simply inappropriate design. It is necessary to determine under which conditions these nonperiodic motions arise, and to design a NSAB system that will resist these vibrations. The dynamic behavior of a rotor supported by an NSAB system was studied using spectral response, bifurcation, Poincaré map, and the maximum Lyapunov exponent. The numerical results showed that chaos in an NSAB system occurred within specific ranges of rotor mass and bearing number. For example, the chaotic regions where the maximum Lyapunov exponents were greater than zero occurred in the intervals of rotor mass 20.84 ≦ mf < 24.1 kg with a bearing number of Λ = 3.45. In addition, the coupling effect of rotor mass and bearing number was also investigated. To predict chaotic behavior, ensemble regression, and the back propagation neural network were used to forecast the occurrence of chaos. It was found that ensemble regression using dataset of 26 × 121 gave the best results and most accurate prediction for this NSAB system. The results may make a valuable contribution to the design of NSAB systems for use in a wide variety of industrial applications.

Funder

Ministry of Science and Technology, Taiwan

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3