Operational Space Iterative Learning Control of Coupled Active/Passive Multilink Cable-Driven Hyper-Redundant Robots

Author:

Peng Jianqing12,Wu Haoxuan3,Lau Darwin4

Affiliation:

1. Sun Yat-sen University School of Intelligent Systems Engineering, , Shenzhen 518107 , China ;

2. Guangdong Provincial Key Laboratory of Fire Science and Technology , Guangzhou 510006 , China

3. Sun Yat-sen University School of Intelligent Systems Engineering, , Shenzhen 518107 , China

4. The Chinese University of Hong Kong Department of Mechanical, and Automation Engineering, , Hong Kong 999077 , China

Abstract

Abstract The operational space control (OSC) of multilink cable-driven hyper-redundant robots (MCDHRs) is required to perform tasks in many applications. As a new coupled active-passive (CAP) MCDHR system, due to the multiple couplings between the active cables, the passive cables, the joints, and the end-effector, the OSC becomes more and more complicated. However, there is currently no robust and effective control method to solve the OSC problem of such types MCDHRs. In this paper, an OSC framework of CAP-MCDHRs using a dynamics-based iterative-learning-control (ILC) method is proposed, considering multivariate optimization. First, the multi-coupling kinematics and the series-parallel coupling dynamics equation (i.e., cable-joint-end) of the CAP-MCDHR are derived. Then, a dynamics-based trajectory tracking framework was constructed. Moreover, an OSC accuracy evaluation model based on a high-precision laser tracker was also designed. The framework allows the tracking of operational space trajectories (OSTs) online with the feasible cable tension and the joint angle. It is also shown that the tracking performance can be improved through the ILC when the desired trajectory is repeatedly performed. Finally, a simulation and an experimental hardware system are built. The results show that the proposed control framework can be easily and effectively applied to the CAP-MCDHR used in real-time.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3