Knowledge Acquisition of Self-Organizing Systems With Deep Multiagent Reinforcement Learning

Author:

Ji Hao1,Jin Yan1

Affiliation:

1. Department of Aerospace and Mechanical Engineering, University of Southern California, 3650 McClintock Avenue, OHE 400, Los Angeles, CA 90089-1453

Abstract

Abstract Self-organizing systems (SOS) can perform complex tasks in unforeseen situations with adaptability. Previous work has introduced field-based approaches and rule-based social structuring for individual agents to not only comprehend the task situations but also take advantage of the social rule-based agent relations to accomplish their tasks without a centralized controller. Although the task fields and social rules can be predefined for relatively simple task situations, when the task complexity increases and the task environment changes, having a priori knowledge about these fields and the rules may not be feasible. In this paper, a multiagent reinforcement learning (RL) based model is proposed as a design approach to solving the rule generation problem with complex SOS tasks. A deep multiagent reinforcement learning algorithm was devised as a mechanism to train SOS agents for knowledge acquisition of the task field and social rules. Learning stability, functional differentiation, and robustness properties of this learning approach were investigated with respect to the changing team sizes and task variations. Through computer simulation studies of a box-pushing problem, the results have shown that there is an optimal range of the number of agents that achieves good learning stability; agents in a team learn to differentiate from other agents with changing team sizes and box dimensions; the robustness of the learned knowledge shows to be stronger to the external noises than with changing task constraints.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference52 articles.

1. Flocks, Herds and Schools: A Distributed Behavioral Model;Reynolds,1987

2. Requisite Variety and Its Implications for the Control of Complex Systems

3. Design of Cellular Self-Organizing Systems;Chiang,2012

4. Evolutionary Computational Synthesis of Self-Organizing Systems;Humann;AI EDAM,2014

5. Effect of Social Structuring in Self-Organizing Systems;Khani;ASME J. Mech. Des.,2016

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3