Effects of Various Parameters on Nanofluid Thermal Conductivity

Author:

Pil Jang Seok1,Choi Stephen U. S.2

Affiliation:

1. School of Aerospace and Mechanical Engineering, Hankuk Aviation University, Goyang, Gyeonggi-do, 412-791, Korea Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439

2. Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439

Abstract

The addition of a small amount of nanoparticles in heat transfer fluids results in the new thermal phenomena of nanofluids (nanoparticle-fluid suspensions) reported in many investigations. However, traditional conductivity theories such as the Maxwell or other macroscale approaches cannot explain the thermal behavior of nanofluids. Recently, Jang and Choi proposed and modeled for the first time the Brownian-motion-induced nanoconvection as a key nanoscale mechanism governing the thermal behavior of nanofluids, but did not clearly explain this and other new concepts used in the model. This paper explains in detail the new concepts and simplifying assumptions and reports the effects of various parameters such as the ratio of the thermal conductivity of nanoparticles to that of a base fluid, volume fraction, nanoparticle size, and temperature on the effective thermal conductivity of nanofluids. Comparison of model predictions with published experimental data shows good agreement for nanofluids containing oxide, metallic, and carbon nanotubes.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference40 articles.

1. Optimum Arrays of Longitudinal, Rectangular Fins in Convective Heat Transfer;Bar-Cohen;Heat Transfer Eng.

2. Heat Sink Optimization With Application to Microchannels;Knight;IEEE Trans. Compon., Hybrids, Manuf. Technol.

3. Effect of Flow Bypass on the Performance of Longitudinal Fin Heat Sinks;Wirtz;ASME J. Electron. Packag.

4. High-Performance Heat Sinking for VLSI;Tuckerman;IEEE Electron Device Lett.

5. Effect of Tip Clearance on the Cooling Performance of a Microchannel Heat Sink;Min;Int. J. Heat Mass Transfer

Cited by 368 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3