Dynamics of Free-Surface Flows With Surfactants

Author:

Swean T. F.1,Beris A. N.2

Affiliation:

1. Ocean Technology Program, Office of Naval Research, Arlington VA 22217

2. Department of Chemical Engineering, University of Delaware, Newark DE 19716

Abstract

There is ample quantitative evidence (through, for example, surface tension measurements) of the presence of surfactants at the air-sea interface in sufficient quantities to influence the sea surface dynamics and its interactions with ambient flow turbulence. The importance of the role of the surfactants can also be judged from independent observations of phenomena such as suppression of short wavelength capillary waves and the presence of long-lived slick structures at the ship wakes. Although there is consensus on the presence of surfactants as the underlying reason behind these phenomena, the capability of quantitative predictions is still lacking for most of them. The objective of the present work is to introduce to the general engineering mechanics community the governing equations and the relevant issues associated with the study of free surface flows with surfactants. In particular, we focus on the interactions between a high Reynolds number flow, interface deformation and surfactant distribution next to and at the water-air interface. In addition, recent progress is briefly reviewed. Then, the remaining outstanding issues to allow the understanding of the dynamics of nonlinear interactions between turbulent flow and surfactant structure and concentration at the air-water interface are outlined.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling soft interface dominated systems: A comparison of phase field and Gibbs dividing surface models;Physics Reports;2017-03

2. Nonequilibrium Thermodynamics of Interfaces;Computational Methods for Complex Liquid-Fluid Interfaces;2015-11-12

3. Theoretical Modeling of Mechanical Behavior and Release Properties of Microcapsules;Microencapsulation and Microspheres for Food Applications;2015

4. Nonlinear rheology of complex fluid–fluid interfaces;Current Opinion in Colloid & Interface Science;2014-12

5. Dynamic behavior of interfaces: Modeling with nonequilibrium thermodynamics;Advances in Colloid and Interface Science;2014-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3