Optimization of an Integrated Energy Storage Scheme for a Dispatchable Wind Powered Energy System

Author:

Garrison Jared B.1,Webber Michael E.1

Affiliation:

1. The University of Texas at Austin, Austin, TX

Abstract

The intermittency of wind and solar power and the mismatch between when they are available and when demand is high have hindered the expansion of these two primary renewable resources. The goal of this research is to analyze an integrated energy system (named DSWiSS for dispatchable solar wind storage system) that includes a novel configuration of wind and solar together with compressed air energy storage (CAES) that is driven from excess nighttime wind energy and thermal storage energized by concentrated solar power in order to make these sources dispatchable during peak demand. This paper builds off prior published work for the DSWiSS configuration with an analysis of actual historical meteorological data for West Texas solar insolation, generation output data for a wind farm in West Texas, recorded electricity demand data of the Electric Reliability Council of Texas (ERCOT) grid, and historical temperature data for West Texas to assess system performance. In this analysis, a comparison approach was taken by optimizing both the operation of a conventional CAES facility that does not incorporate wind and solar directly and the operation of a CAES facility directly coupled to a wind farm, which will be referred to as CAES-plus-Wind. Dynamic parameters for wind generation, electricity price, and ambient temperature were utilized in the optimization models. Through the use of optimization models and the incorporation of a thermodynamic model of the CAES equipment, we found that in each season the electricity price is a key factor in determining whether the facility stores or generates energy. For the CAES equipment, the summer season yields the highest profits primarily because of the larger spread between highest and lowest daily price for electricity. Even though profits for the CAES equipment in the other seasons are small or negative, it appears that the value of the facility in the summer is greater than the costs in the other three seasons combined. Additionally, we found that the value of directly coupling the CAES facility to a wind farm versus operating the two entities separately yielded no significant increase in profits. Lastly, this analysis did not attempt to quantify the possible increase in wind farm generation output that could result from reduced curtailment with the use of an energy storage system such as is proposed in this paper. This additional source of revenue could be a major contributor to the economic justification for large scale energy storage.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3