Application of Exergoeconomic Techniques to the Optimization of a Refrigeration Evaporator Coil With Continuous Fins

Author:

Khir Tahar1,Jassim Rahim K.2,Zaki Galal M.3

Affiliation:

1. Jeddah College of Technology, P.O. Box 42204, Jeddah 21 541, Kingdom of Saudi Arabia

2. Yanbu Industrial College, Royal Commission For Jubail and Yanbu, P.O. Box 30436, Yanbu Industrial City 21 477, Kingdom of Saudi Arabia

3. King Abdulaziz University, P.O. Box 80204, Jeddah 21 587, Kingdom of Saudi Arabia

Abstract

An optimization for the geometrical parameters of continuous fins on an array of tubes of a refrigeration evaporator is developed in this paper using the exergy method. The method is based on exergy, economic analysis, and optimization theory. As there are humid air and refrigerant single- and two-phase streams involved in the heat transfer process, then there are irreversibilities or exergy destruction, due to pressure losses İΔP, due to temperature difference İΔT and due to specific humidity gradient İΔω. These principal components of total irreversibility are not independent, and their relative contribution to total irreversibility of a cross-flow refrigeration evaporator is investigated. A change in geometry was obtained by varying the evaporator tube diameter for a selected evaporator capacity, and hence the evaporator tube length and total heat transfer area are calculated for a fixed evaporator face length. In this way, the effect of changes in the geometry on the total number of exergy destruction units of the heat exchange process is investigated. The optimum balance between the three components of irreversibility (İΔP,İΔT, and İΔω) is also determined, thereby giving the optimum solution for the heat exchanger area. The total cost function, which provides a measure of the contribution of the evaporator to the total cost of the refrigeration system, is expressed on the basis of annual capital and electrical energy costs. The total cost function is minimized with respect to the total heat transfer area and the total number of exergy destruction units (NI). The relationship between the operational variables, heat transfer area, refrigerant and air irreversibilities, and the total annual cost for this type of evaporator are developed, presented, and discussed. The pressure, temperature, and specific humidity irreversibilities are found to be 30.34%, 33.78%, and 35.88%, respectively, of the total irreversibility, which is 8.5% of the evaporator capacity.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference27 articles.

1. Advanced Engineering Thermodynamics

2. The Thermodynamic Design of Heat Transfer;Bejan

3. Optimisation of Heat Exchangers in Energy Conversion Systems;Ranasinghe

4. Thermoeconomic Analysis of Power Plants: An Application to a Coal Fired Electrical Generating Station;Rosen;Energy Convers. Manage.

5. Exergoeconomic Analysis of Power Plants Operating on Various Fuels;Rosen;Appl. Therm. Eng.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3