A Direct Backstepping Super-Twisting Algorithm Controller MPPT for a Standalone Photovoltaic Storage System: Design and Real-Time Implementation

Author:

Benadli Ridha12,Frey David3,Lembeye Yves3,Bjaoui Marwen4,Khiari Brahim5,Sellami Anis6

Affiliation:

1. Université Grenoble Alpes , CNRS, Grenoble INP, G2Elab, Grenoble 38000 , France ;

2. LANSER Laboratory/CRTEn B.P.95 Hammam-Lif 2050, Tunis 1008 , Tunisia

3. Université Grenoble Alpes , CNRS, Grenoble INP, G2Elab, Grenoble 38000 , France

4. LANSER Laboratory/CRTEn , B.P.95 Hammam-Lif 2050, Tunis 1008 , Tunisia

5. LANSER Laboratory/CRTEn , B.P.95 Hammam-Lif, Tunis 1008, Tunisia

6. LISIER, ENSIT , BP, 56, Bâb Manara, Tunis 1008 , Tunisia

Abstract

Abstract In this paper, we introduce a novel direct maximum power point tracking (MPPT) approach that combines the backstepping controller (BSC) and the super-twisting algorithm (STA). The direct backstepping super-twisting algorithm control (BSSTAC) MPPT was developed to extract the maximum power point (MPP) produced by a photovoltaic (PV) generator connected to the battery through a boost DC-DC converter. To reduce the number of sensors required for the BSSTAC implementation, a high gain observer (HGO) was proposed to estimate the value of the state of the PV storage system from measurements of the PV generator voltage and current. The suggested technique is based on the quadratic Lyapunov function and does not employ a standard MPPT algorithm. Results show that the suggested control scheme has good tracking performance with reduced overshoot, chattering, and settling time as compared to the prevalent MPPT tracking algorithms such as perturb and observe (P&O), conventional sliding mode control (CSMC), BSC, and integral backstepping controller (IBSC). Finally, real-time findings using the dSPACE DS 1104 software indicate that the generator PV can accurately forecast the MPP, as well as the efficacy of the suggested MPPT technique. The provided approach’s effectiveness has been validated by a comprehensive comparison with different methods, resulting in the greatest efficiency of 99.88% for BSSTAC.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3