High Aspect Ratio Blading in an Axial Compressor Stage

Author:

Schmidt Tobias1,Peters Markus1,Jeschke Peter1,Matzgeller Roland2,Hiller Sven-Jürgen2

Affiliation:

1. RWTH Aachen University, Aachen, Germany

2. MTU Aero Engines, Munich, Germany

Abstract

This paper majorly aims to identify and understand the driving flow phenomena when the blading aspect ratio of a 1.5-stage axial compressor is increased so that its overall axial length is reduced. The blading is representative for a state-of-the-art high-pressure compressor (HPC) front-stage design. As part of the investigation steady-state RANS simulations are performed to evaluate the impact on its performance and operability. Moreover, an optimized high aspect ratio (HAR) design is introduced to recover performance penalties. In order to achieve the desired reduction in axial stage length at constant blade row spacing and blade height, numerous possible combinations of increased rotor and stator aspect ratios exist. The impact on compressor efficiency and surge margin will be more or less severe, depending on the chord length reduction in rotor and stator. One intermediate combination of both changes in rotor and corresponding stator aspect ratio is analyzed in detail. The results show that by reducing rotor chord length, the compressor’s stability is predominantly compromised, whereas a shorter stator chord has a bigger impact on efficiency than the rotor. For each HAR configuration, profile loss is increased through a reduced blade chord Reynolds number and a higher profile edge thickness-to-chord ratio. Secondary loss is significantly reduced. However, this effect is extenuated by an increased endwall boundary layer thickness-to-chord ratio. Ultimately, this yields a diminished overall stage efficiency. In general, current HPC blade designs exhibit a lower initial rotor aspect ratio compared to the stator vanes. Consequently, an equivalent stage length reduction has a less crucial impact on Reynolds number — hence profile loss — for rotor blades than for stator vanes. Thus, regarding efficiency, there is an optimum of balancing rotor and stator chord length reduction yielding the least efficiency drop. On the contrary, the stability margin for the compressor stage analyzed is primarily driven by the rotor’s clearance-to-chord ratio. Hence, at constant tip clearance an increase in the rotor’s aspect ratio is proportional to the resulting lack of stability. However, specific compressor design modifications are introduced in order to recover the stability margin without adversely affecting design point efficiency, such that the optimized HAR compressor stage exhibits at least the same performance specifications of the baseline design. This study’s findings also encourage that increasing the blading aspect ratio is a feasible measure for reducing the compressor’s overall axial length aiming a compact design. An optimized HAR compressor allows additional design flexibility, which provides potential for performance improvements.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3