Computational Study of a Customised Shallow-Sump Aero-Engine Bearing Chamber With Inserts to Improve Oil Residence Volume

Author:

Adeniyi Akinola A.1,Chandra Budi2,Simmons Kathy3

Affiliation:

1. University of Central Lancashire, Preston, UK

2. University of the West of England, Bristol, UK

3. University of Nottingham, Nottingham, UK

Abstract

An aero-engine bearing chamber is a structure that is used to contain and collect oil used in lubricating and cooling the bearings supporting the high-speed engine shafts. There are various bearings in an aero-engine. Within the bearing chambers, there are typically the bearings, rotating shafts, seals and gears (in some designs). The walls of the bearing chamber are stationary and there are vents and sumps to take out the oil, via an offtake pipe, and the sealing air. The oil collected via the sump and vents is recycled and used again in the loop. To prevent oil degradation and reduce chance of coking in the chamber, it is desired that all of the oil goes through the recycling loop, with no oil staying longer than necessary in the chamber. The sealing air is used to maintain a positive pressure to keep the oil within the chamber. The flow inside a bearing chamber is highly turbulent and consists of a rotating mixture of oil and air. A smaller amount of the oil, mostly as oil-droplets, exits at the vents and is separated from the air using de-aerators [1]. It is expected that by gravity, most of the oil collects at the sump and can be easily scavenged. This is provided the sump can be large enough. The geometry of a bearing chamber is, however, complex largely because of space limitations. It is very important that oil is not resident longer than necessary to prevent over-heating and therefore deterioration or coking. Experimental observations by Chandra & Simmons [2], have shown that bearing chambers with deep sumps perform better that those with shallow sumps. Since shallow sumps are inevitable, a number of innovative studies have been done to improve bearing chamber designs. The presence of air in the oil (e.g. as bubbles) reduces the efficiency of the scavenging pump. Other factors such as oil momentum and windage can take oil away from the off-take pipe potentially increasing oil residence volume. Chandra & Simmons [2] placed inserts such as grille cover, perforated plate, etc, on a side of the bearing wall and improvements in the residence volume were seen. In this work, we are looking at a detailed computational fluid dynamics (CFD) simulation of one of the inserts that performed well. This will aid understanding of the flow characteristics of using an insert to improve oil residence in a bearing chamber.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3