Numerical Investigation of the Heat Transfer and Flow Phenomena in an IP Steam Turbine in Warm-Keeping Operation With Hot Air

Author:

Toebben Dennis1,Łuczyński Piotr1,Diefenthal Mathias1,Wirsum Manfred1,Reitschmidt Stefan2,Mohr Wolfgang F. D.2,Helbig Klaus3

Affiliation:

1. RWTH Aachen University, Aachen, Germany

2. General Electric (Switzerland) GmbH, Baden, Switzerland

3. GE Power AG, Mannheim, Germany

Abstract

Nowadays, steam turbines in conventional power plants deal with an increasing number of startups due to the high share of fluctuating power input of renewable generation. Thus, the development of new methods for flexibility improvements, such as reduction of the start-up time and its costs, have become more and more important. At the same time, fast start-up and flexible steam turbine operation increase the lifetime consumption and reduce the inspection intervals. One possible option to prevent these negative impacts of a flexible operation is to keep the steam turbine warm during a shut down and a startup. In order to do so, General Electric has developed a concept for warm-keeping respectively pre-warming of a high-pressure (HP) / intermediate-pressure (IP) steam turbine with hot air: After a certain cool-down phase, air is passed through the turbine while the turbine is rotated by the turning engine. The flow and the rotational direction can be inverted to optimize the warming operation. In order to fulfill the requirements of high flexibility in combination with reduced costs and thermal stresses during the start-up, a detailed investigation of the dominant heat transfer effects and the corresponding flow structure is necessary: Complex numerical approaches, such as Conjugate Heat Transfer (CHT), can provide this corresponding information and help to understand the physical impact of the flow phenomena. The aim of the present work is thus to understand the predominant heat transport phenomena in warm-keeping operation and to gain detailed heat transfer coefficients within the flow channel for blade, vane and shrouds. A multitude of steady-state simulations were performed to investigate the different warm-keeping operation points. Data from literature was recomputed in good agreement to qualitatively validate the numerical model in windage operation. Furthermore, the steady-state simulations were compared with transient Computational Fluid Dynamics (CFD) simulations to verify that the flow in warming operation can be simulated with a steady-state case. The transient calculations confirm the steady-state results. A variation of the mass flow rate and the rotational speed was conducted to calculate a characteristic map of heat transfer coefficients. The Conjugate Heat Transfer simulations provide an insight into the flow structure and offer a comparison with the flow phenomena in conventional operation. In addition, the impact of the flow phenomena on the local heat transfer was investigated.

Publisher

American Society of Mechanical Engineers

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3