The Use of Notched Beams to Establish a Multiaxial Stress-Fracture Criterion for Beryllium

Author:

Mayville R. A.1,Finnie I.1

Affiliation:

1. Department of Mechanical Engineering, University of California, Berkeley, Calif. 94720

Abstract

Fracture of beryllium under biaxial states of stress has been studied in the past using thin-walled tubes loaded by combinations of axial load, torsion, and internal pressure. In the present investigation to obtain a triaxial state of stress, notched beams of beryllium with varying dimensions were tested in plane strain four-point bending. The conditions necessary to ensure plane strain are discussed in detail and plane strain finite element analyses are used to determine the stresses and strains at fracture in the notched specimens. Based on the test results a strain dependent, maximum tensile stress fracture criterion is proposed for parts without macroscopic cracks. In addition, the plane strain fracture toughness of beryllium is estimated from the notched bar tests using the RKR model.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3