Optimization Studies for Integrated Solar Combined Cycle Systems

Author:

Kelly Bruce1,Herrmann Ulf2,Hale Mary Jane3

Affiliation:

1. Nexant, Inc., San Francisco, CA

2. FLABEG Solar International GmbH, Köln, Germany

3. National Renewable Energy Laboratory, Golden, CO

Abstract

Abstract The integrated solar plant concept was initially proposed by Luz Solar International [1] as a means of integrating a parabolic trough solar plant with modern combined cycle power plants. An integrated plant consists of a conventional combined cycle plant, a solar collector field, and a solar steam generator. During sunny periods, feedwater is withdrawn from the combined cycle plant heat recovery steam generator, and converted to saturated steam in the solar steam generator. The saturated steam is returned to the heat recovery steam generator, and the combined fossil and solar steam flows are superheated in the heat recovery steam generator. The increased steam flow rate provides an increase in the output of the Rankine cycle. During cloudy periods and at night, the integrated plant operates as a conventional combined cycle facility. Two studies on integrated plant designs using a General Electric Frame 7(FA) gas turbine and a three pressure heat recovery steam generator are currently being conducted by the authors. Preliminary results include the following items: 1) the most efficient use of solar thermal energy is the production of high pressure saturated steam for addition to the heat recovery steam generator; 2) the quantity of high pressure steam generation duty which can be transferred from the heat recovery steam generator to the solar steam generator is limited; thus, the maximum practical solar contribution is also reasonably well defined; 3) small annual solar thermal contributions to an integrated plant can be converted to electric energy at a higher efficiency than a solar-only parabolic trough plant, and can also raise the overall thermal-to-electric conversion efficiency in the Rankine cycle; and 4) annual solar contributions up to 12 percent in an integrated plant should offer economic advantages over a conventional solar-only parabolic trough power plant.

Publisher

American Society of Mechanical Engineers

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3