Virtual Simulation and Optimization of Milling Applications—Part II: Optimization and Feedrate Scheduling

Author:

Merdol S. Doruk1,Altintas Yusuf1

Affiliation:

1. Manufacturing Automation Laboratory, Department of Mechanical Engineering, The University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada

Abstract

The ultimate goal of future manufacturing is to design, test, and manufacture parts in a virtual environment before they are sent to the shop floor. While Part I of this paper presents the modeling of process simulation in a virtual environment, this second part presents computationally efficient algorithms for optimal selection of depth of cut, width of cut, speed, and feed while considering process constraints and variation of the part geometry along the tool path. The objective function is selected as the material removal rate (MRR), and optimization of milling processes is based on user defined constraints, such as maximum tool deflection, torque/power demand, and chatter stability. The MRR is maximized by optimal selection of cutting speed, feed rate, depth, and width of cut. Two alternative optimization strategies are presented. Preprocess optimization provides allowable depth and width of cut during part programming at the computer aided manufacturing stage using chatter constraint, whereas the postprocess optimization tunes only feed rate and spindle speed of an existing part program to maximize productivity without violating torque, power, and tool deflection limits. Optimized feed rates are filtered by considering machine tool axis limitations, and the algorithms are tested in machining a helicopter gear box cover.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3