Guidelines for Designing Micropillar Structures for Enhanced Evaporative Heat Transfer

Author:

Guye Kidus1,Dong De1,Kim Yunseo2,Lee Hyoungsoon3,Dogruoz Baris4,Agonafer Damena1

Affiliation:

1. Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130

2. Department of Intelligent Energy and Industry, Chung-Ang University, Seoul 06974, South Korea

3. Department of Intelligent Energy and Industry, School of Mechanical Engineering, Chung-Ang University , Seoul 06974, South Korea

4. Cisco Systems, Inc., 425 E. Tasman Dr., San Jose, CA 95134

Abstract

Abstract Over the last several decades, cooling technologies have been developed to address the growing thermal challenges associated with high-powered electronics. However, within the next several years, the heat generated by these devices is predicted to exceed 1 kW/cm2, and traditional methods, such as air cooling, are limited in their capacities to dissipate such high heat fluxes. In contrast, two-phase cooling methods, such as microdroplet evaporation, are very promising due to the large latent heat of vaporization associated with the phase change process. Previous studies have shown that nonaxisymmetric droplets have different evaporation characteristics than spherical droplets. The solid–liquid and liquid–vapor interfacial areas, volume, contact angle, and thickness of a droplet confined atop a micropillar are the primary parameters that influence evaporative heat transport. These parameters have a strong influence on both the conduction and diffusion resistance during the evaporation process. For example, a droplet with a higher liquid–vapor interfacial area will favorably increase heat transfer. Increased droplet thickness, on the other hand, has a detrimental influence on the evaporation rate. The dimensions of these droplets will vary in response to changes in each of the aforementioned parameters. Lowering the droplet thickness can be achieved by decreasing the liquid volume while maintaining a constant solid–liquid area. However, if the solid–liquid area and volume vary simultaneously, the average droplet thickness may increase, decrease, or remain constant. Furthermore, changes in the shape of the droplet modify the local equilibrium contact angle of the droplet for different azimuthal angles. As a result, the optimal combination of these parameters must be identified to maximize the heat transfer performance of an evaporating microdroplet. These droplet parameters can be manipulated by selecting different micropillar cross sections. In this work, we develop a shape optimization tool using the particle swarm optimization algorithm to maximize evaporation from a droplet confined atop a micropillar. The tool is used to optimize the shape of a nonaxisymmetric droplet. Compared to droplets atop circular and regular equilateral triangular micropillar structures, we find that droplets confined on pseudo-triangular micropillar structures have 23.7% and 5.7% higher heat transfer coefficients, respectively. The results of this work will advance the design of microstructures that support droplets with maximum heat transfer performance.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference43 articles.

1. 3D Integrated Circuit Cooling With Microfluidics;Micromachines,2018

2. Challenges and Opportunities in gen3 Embedded Cooling With High-Quality Microgap Flow,2018

3. High-Performance Heat Sinking for VlSI;IEEE Electron Device Lett.,1981

4. Microscale Evaporative Cooling Technologies for High Heat Flux Microelectronics Devices: Background and Recent Advances;Appl. Therm. Eng.,2021

5. Design and Optimization Array of Micropillar Structures for Enhanced Evaporative Cooling of High-Powered Electronics,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3