FLOW CHECK AND ADIABATIC EFFECTIVENESS MEASUREMENTS ON TRADITIONALLY VERSUS ADDITIVELY MANUFACTURED FILM-COOLING HOLES

Author:

Cubeda Simone1,Andrei Luca2,Innocenti Luca3,Paone Fabrizio3,Cocchi Lorenzo4,Picchi Alessio5,Facchini Bruno6

Affiliation:

1. Baker Hughes Turbomachinery Process Solutions via F. Matteucci 2 Florence, Florence 50127 Italy

2. Via Matteucci 2 Florence, FI 50127 Italy

3. via F. Matteucci 2 Florence, FI 50127 Italy

4. Via Santa Marta 3 Florence, Italy 50139 Italy

5. via Vittorio Emanuele 32 Calenzano, Firenze 50041 Italy

6. Department of Industrial Engineering via santa marta 3 Florence, florence 50139 Italy

Abstract

Abstract In the recent years Additive Manufacturing (AM) methods are getting more and more attractive and feasible for the realization of components and subcomponents of gas turbines. They are receiving much attention since, on one hand, the manufacturing of complex 3D geometries is allowed and, on the other, manufacturing and delivery times can be cut down. At the current state of the art, to the authors' knowledge only few applications have yet been commercialized relatively to cooling holes, due to the intrinsic difficulties associated with such a critical feature. Lately, Baker Hughes is studying the possibility to manufacture film-cooling holes via the DMLM technology in order to exploit the flexibility of such innovative manufacturing method and hence eliminate additional processes and lead time. From the open literature it is known that additively manufactured holes can have a more irregular shape and higher roughness than traditional ones, which may lead not only to a reduction in coolant flow but more importantly to a decay of the film-cooling adiabatic effectiveness. For this reason, a test campaign has been conducted in collaboration with the University of Florence (Italy) with the objective of characterizing the performance (minimum passage diameter, flow check and adiabatic effectiveness) of AM vs traditional cylindrical holes on simple-geometry coupons built upon different construction angles. Results were then analyzed in order to fully compare the performance of AM vs traditional film-cooling holes at different operating regimes.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3