Comparison of the Flame Dynamics of a Liquid-Fueled Swirl-Stabilized Combustor for Different Degrees of Fuel-Air Premixing

Author:

Kaufmann Jan1,Vogel Manuel1,Sattelmayer Thomas1

Affiliation:

1. Chair of Thermodynamics, Technical University of Munich , Garching 85748, Germany

Abstract

Abstract This study investigates the flame dynamics of lean premixed kerosene combustion for two different degrees of fuel–air premixing using a swirl stabilized burner with an axially movable twin fluid fuel injection nozzle. Thermal power, equivalence ratio, and atomizing air mass flow are varied systematically for both nozzle positions investigated. Measurements of the droplet size distribution at the nozzle exit are provided for all operation points. NOx emission measurements and OH*-chemiluminescence flame images show that stationary combustion characteristics significantly change with the nozzle position. Flame Transfer Functions (FTFs) are presented and interpreted for all operation points. The FTFs for the two configurations differ most in the low frequency range where the influence of the droplet dynamics is expected to be highest. For both configurations, a change in thermal power does not affect droplet size, flame shape, NOx emissions, and FTF. The observed trends in response to changes in equivalence ratio and atomizing air mass flow are opposite for both configurations. NOx emissions and flame shape are independent of the atomization air mass flow in the highly premixed configuration but not in the partially premixed configuration. In contrast to this, the FTF is affected by changes of the atomization air mass flow in both configurations, but again the trends are opposite. The observed trends for the highly premixed configuration are modeled and reproduced by a change in the phase relation between the equivalence ratio fluctuations and other instability driving mechanisms.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference28 articles.

1. A Mechanism of Combustion Instability in Lean Premixed Gas Turbine Combustors;ASME J. Eng. Gas Turbines Power,2001

2. Influence of the Swirler Design on the Flame Transfer Function of Premixed Flames,2005

3. Impact of Swirl Fluctuations on the Flame Response of a Perfectly Premixed Swirl Burner;ASME J. Eng. Gas Turbines Power,2010

4. Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion;Prog. Energy Combust. Sci.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3