Higher-Order Tooth Flank Form Error Correction for Face-Milled Spiral Bevel and Hypoid Gears

Author:

Fan Qi1,DaFoe Ronald S.1,Swanger John W.1

Affiliation:

1. The Gleason Works, 1000 University Avenue, Rochester, NY 14692

Abstract

The increasing demand for low noise and high strength leads to higher quality requirements in manufacturing spiral bevel and hypoid gears. Due to heat treatment distortions, machine tolerances, variation of cutting forces, and other unpredictable factors, the real tooth flank form geometry may deviate from the theoretical or master target geometry. This will cause unfavorable displacement of tooth contact and increased transmission errors, resulting in noisy operation and premature failure due to edge contact and highly concentrated stresses. In the hypoid gear development process, a corrective machine setting technique is usually employed to modify the machine settings, compensating for the tooth flank form errors. Existing published works described the corrective machine setting technique based on the use of mechanical hypoid gear generators, and the second-order approximation of error surfaces. Today, computer numerically controlled (CNC) hypoid gear generators have been widely employed by the gear industry. The universal motion concept has been implemented on most CNC hypoid generators, providing additional freedoms for the corrections of tooth flank form errors. Higher-order components of the error surfaces may be corrected by using the higher-order universal motions. This paper describes a new method of tooth flank form error correction utilizing the universal motions for spiral bevel and hypoid gears produced by the face-milling process. The sensitivity of the changes of tooth flank form geometry to the changes of universal motion coefficients is investigated. The corrective universal motion coefficients are determined through an optimization process with the target of minimization of the tooth flank form errors. A numerical example of a face-mill completing process is presented. The developed new approach has been implemented with computer software. The new approach can also be applied to the face-hobbing process.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference21 articles.

1. Gear Geometry and Applied Theory

2. A Pair of Tooth Surfaces Without Variation of Bearing Loads;Honda

3. On the Three Laws of Gearing;Dooner;ASME J. Mech. Des.

4. The Ultimate Motion Graph;Stadtfeld;ASME J. Mech. Des.

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3