Application of Variable Valve Actuation Strategies and Direct Gasoline Injection Schemes to Reduce Combustion Harshness and Emissions of Boosted HCCI Engine

Author:

Hunicz Jacek1,Mikulski Maciej2

Affiliation:

1. Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, Lublin 20-618, Poland e-mail:

2. School of Technology and Innovation, Energy Technology, University of Vaasa, Wolffintie 34, Vaasa FI-65200, Finland e-mail:

Abstract

The present study investigates various measures to reduce pressure rise rates (PRRs) in a residual-affected homogeneous charge compression ignition (HCCI) engine. At the same time, the impact of those measures on efficiency and emissions is assessed. Experimental research was performed on a single cylinder engine equipped with a fully flexible valve train mechanism and direct gasoline injection. The HCCI combustion mode with exhaust gas trapping was realized using negative valve overlap (NVO) and fuel reforming, achieved via the injection of a portion of fuel during exhaust recompression. Three measures are investigated for the PRR control under the same reference operating conditions, namely: (i) variable intake and exhaust valve timing, (ii) boost pressure adjustment, and (iii) split fuel injection to control the amount of fuel injected for reforming. Variable exhaust valve timing enabled control of the amount of trapped residuals, and thus of the compression temperature. The reduction in the amount of trapped residuals, at elevated engine load, delays auto-ignition, which results in a simultaneous reduction of pressure rise rates and nitrogen oxides emissions. The effects of intake valve timing are much more complex because they include the variability in the amount of intake air, the thermodynamic compression ratio, as well as the in-cylinder fluid flow. It was found, however, that both early and late intake valve openings (IVOs) delay auto-ignition and prolong combustion. Additionally, the reduction of the amount of fuel injected during exhaust recompression further delays combustion and reduces combustion rates. Intake pressure reduction has by far the largest effect on peak pressure reduction yet is connected with excessive NOX emissions. The research successfully identifies air-path and injection techniques, which allow for the control of combustion rates and emissions under elevated load regime.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3