Flow Characteristics of the Molecular Pump of Holweck Type in the Slip Regime

Author:

Tsui Yeng-Yung1,Su Yuan-Sheng1,Cheng Hong-Ping2

Affiliation:

1. Department of Mechanical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan R.O.C.

2. Department of Air-Conditioning and Refrigeration Engineering, National Taipei University of Technology, Taipei 100, Taiwan R.O.C.

Abstract

A computational method is used to analyze the viscous flow in the spiral grooves of the molecular drag pump of Holweck type. The flow is assumed in the slip flow regime and, thus, the slip boundary condition is imposed at walls. Tests are conducted to examine the effects of clearance gap, spiral angle, channel height, number of channels, and rotating speed. The appearance of clearance brings about lower pressure gradient between side walls of the channel and, thus, reduces the pressure rise in the channel. Testing on spiral angle and channel height indicates that these parameters need to be optimized to achieve better performance. Results also reveal that increase of rotating speed is an effective way to promote compression ratio. In calculations, pressure rise is enhanced when the number of channel is decreased. However, it should be understood that by reducing channel number the cross-sectional area of the channel is decreased, which has the effects of reducing the pressure rise.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3