Affiliation:
1. Industrial Engineering School, University of Extremadura, Avenida de Elvas s∕n, 06071 Badajoz, Spain
Abstract
For practical applications, the fractional-order integral and differential operators require to be approximated as stable, causal, minimum-phase integer-order systems, which usually leads, in both continuous and discrete domains, to high order transfer functions. Assuming that an approximation of good quality is available for the fractional operator, efficient implementations, in both cost and speed, are required. The fast development of the microelectronics gives us the opportunity of using cheap, accurate, programmable, and fast devices for implementing reconfigurable analog and digital circuits. Among these devices, field programmable gate arrays, switched capacitor circuits, and field programmable analog arrays are used in this paper for the implementation of a fractional-order integrator, previously approximated by recursive Oustaloup’s method. The fundamentals of the devices as well as the design procedures are given, and the implementations are compared considering their simulated frequency responses, the design efforts, and other important issues.
Subject
Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献