Distribution of Brain Strain in the Cerebrum for Laboratory Impacts to Ice Hockey Goaltender Masks

Author:

Michio Clark J.12,Post Andrew34,Blaine Hoshizaki T.5,Gilchrist Michael D.15

Affiliation:

1. School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland;

2. School of Human Kinetics, University of Ottawa, 200 Lees Avenue, Room A106, Ottawa, ON K1N 6N5, Canada e-mail:

3. School of Human Kinetics, University of Ottawa, 200 Lees Avenue, Room A106, Ottawa, ON K1N 6N5, Canada;

4. Division of Neurosurgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada

5. School of Human Kinetics, University of Ottawa, 200 Lees Avenue, Room A106, Ottawa, ON K1N 6N5, Canada

Abstract

Concussions are among the most common injuries sustained by goaltenders. Concussive injuries are characterized by impairment to neurological function which can affect many different brain regions. Understanding how different impact loading conditions (event type and impact site) affect the brain tissue response may help identify what kind of impacts create a high risk of injury to specific brain regions. The purpose of this study was to examine the influence of different impact conditions on the distribution of brain strain for ice hockey goaltender impacts. An instrumented headform was fitted with an ice hockey goaltender mask and impacted under a protocol which was developed using video analysis of real world ice hockey goaltender concussions for three different impact events (collision, puck, and fall). The resulting kinematic response served as input into the University College Dublin Brain Trauma Model (UCDBTM), which calculated maximum principal strain (MPS) in the cerebrum. Strain subsets were then determined and analyzed. Resulting peak strains (0.124–0.328) were found to be within the range for concussion reported in the literature. The results demonstrated that falls and collisions produced larger strain subsets in the cerebrum than puck impacts which is likely a reflection of longer impact duration for falls and collisions than puck impacts. For each impact event, impact site was also found to produce strain subsets of varying size and configuration. The results of this study suggest that the location and number of brain regions which can be damaged depend on the loading conditions of the impact.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference84 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3