Investigation of Applicability of Transporting Water Mist for Cooling Turbine Blades

Author:

Wang Ting1,Ragab Reda1

Affiliation:

1. Energy Conversion and Conservation Center, University of New Orleans, New Orleans, LA

Abstract

Abstract This paper presents a numerical study to investigate the feasibility of transporting water mist to the rotating blades of a high-pressure turbine. The idea of using mist film cooling to enhance conventional air cooling has been proven to be a feasible technique under laboratory conditions. However, there are challenges in implementing this scheme for real gas turbine systems. The first challenge is how to transport the mist to the rotating blades and the second challenge is delivering the mist to the injection holes and getting the particles to survive within the harsh gas turbine environment. Both a zero-dimensional mist evaporation analytical model and a 3D computational fluid dynamics (CFD) scheme are employed for analysis. In the CFD simulation, the Lagrangian–Eulerian method is used along with the discrete phase model (DPM) to track the evaporation process of each individual water droplet. For transporting the mist to the blades, the high-pressure water mist is injected into the stream of cooling air extracted from the compressor through two different passages. The first passage passes through the rotor cover-plate cavity before entering the blade base. The second passage passes through a diaphragm box on the base of the second vane, then tangentially through a cooling passage in the rotating shaft, and eventually to the blade base. The results show that it is feasible to transport the mist from the turbine casing to the blade through both passages, provided that droplets with sufficient particle diameter and mist loading are used. The shorter passage, through the nozzle diaphragm, alleviates a lot of challenges facing the passage through the blade cavity and seems to be more practical. A side benefit of transporting mist through the internal passages is the additional cooling of the preswirler and rotor cover plates. The results are encouraging for implementing the mist cooling technique under real gas turbine conditions.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3