A New Mistuning Identification Method Based on the Subset of Nominal System Modes Method

Author:

Waldherr Christian U.1,Buchwald Patrick1,Vogt Damian M.1

Affiliation:

1. Institute of Thermal Turbomachinery and Machinery Laboratory (ITSM), University of Stuttgart, Stuttgart D-70569, Germany

Abstract

Abstract The mistuning problem of quasi-periodic structures has been the subject of numerous scientific investigations for more than 50 years. Researchers developed reduced-order models to reduce the computational costs of mistuning investigations including finite element models. One question which has also high practical relevance is the identification of mistuning based on modal properties. In this work, a new identification method based on the subset of nominal system modes method (SNM) is presented. Different to existing identification methods where usually the blade stiffness of each sector is scaled by a scalar value, N identification parameters are used to adapt the modal blade stiffness of each sector. The input data for the identification procedure consist solely of the mistuned natural frequencies of the investigated mode family as well as of the corresponding mistuned mode shapes in the form of one degree-of-freedom per sector. The reduction basis consists of the tuned mode shapes of the investigated mode family. Furthermore, the proposed identification method allows for the inclusion of centrifugal effects like stress stiffening and spin softening without additional computational effort. From this point of view, the presented method is also appropriate to handle centrifugal effects in reduced-order models using a minimum set of input data compared to existing methods. The power of the new identification method is demonstrated on the example of an axial compressor blisk. Finite element calculations including geometrical mistuning provide the database for the identification procedure. The correct functioning of the identification method including measurement noise is also validated to show the applicability to a case of application where real measurement data are available.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3