Abstract
Frictional-cohesive solids such as soil, ores, chemicals, sugar, flour are regarded as plastic and represented by the Jenike-Shield yield function [1] during steady flow. The stress-strain rate relations are based on isotropy, continuity, and a one-to-one dependence of density on the major pressure. In plane strain and in axial symmetry the stress field requires the solution of a system of two hyperbolic partial differential equations. The velocity field can then be computed by solving another system of two linear homogeneous partial differential equations of the hyperbolic type. In straight conical channels, a particular stress field called the “radial stress field” assumes a special importance because evidence has been presented elsewhere that all general fields tend to approach the radial stress fields in the vicinity of the vertex. Examples of numerical solutions of radial stress fields are given.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
119 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献