Affiliation:
1. Michigan State University, East Lansing, MI
2. Carnegie Mellon University, Pittsburgh, PA
Abstract
Computations were performed to investigate the three-dimensional flow and heat transfer in a high aspect ratio channel in which one or two wall are lined with four rows of hemispherical cavities arranged in a staggered fashion with two Reynolds numbers (23,000 and 46,000). The focus is on understanding the flow induced by cavities and how that flow affects surface heat transfer. Computed results were compared with available experimental data.
This computational study is based on the ensemble-averaged conservation equations of mass, momentum (compressible Navier-Stokes), and energy closed by the low Reynolds number shear-stress transport k-ω turbulence model (wall functions were not used). Solutions were generated by a cell-centered finite-volume method that uses third-order accurate flux-difference splitting of Roe with limiters, multigrid acceleration of a diagonalized ADI scheme with local time stepping, and patched/overlapped structured grids.
Publisher
American Society of Mechanical Engineers
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献