Automating Design Requirement Extraction From Text With Deep Learning

Author:

Akay Haluk1,Yang Maria1,Kim Sang-Gook1

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, Massachusetts, United States

Abstract

Abstract Nearly every artifact of the modern engineering design process is digitally recorded and stored, resulting in an overwhelming amount of raw data detailing past designs. Analyzing this design knowledge and extracting functional information from sets of digital documents is a difficult and time-consuming task for human designers. For the case of textual documentation, poorly written superfluous descriptions filled with jargon are especially challenging for junior designers with less domain expertise to read. If the task of reading documents to extract functional requirements could be automated, designers could actually benefit from the distillation of massive digital repositories of design documentation into valuable information that can inform engineering design. This paper presents a system for automating the extraction of structured functional requirements from textual design documents by applying state of the art Natural Language Processing (NLP) models. A recursive method utilizing Machine Learning-based question-answering is developed to process design texts by initially identifying the highest-level functional requirement, and subsequently extracting additional requirements contained in the text passage. The efficacy of this system is evaluated by comparing the Machine Learning-based results with a study of 75 human designers performing the same design document analysis task on technical texts from the field of Microelectromechanical Systems (MEMS). The prospect of deploying such a system on the sum of all digital engineering documents suggests a future where design failures are less likely to be repeated and past successes may be consistently used to forward innovation.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3