Extremely Large Oscillations of Cantilevers Subject to Motion Constraints

Author:

Farokhi Hamed1,Ghayesh Mergen H.2

Affiliation:

1. Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK e-mail:

2. School of Mechanical Engineering, University of Adelaide, Adelaide 5005, South Australia, Australia e-mail:

Abstract

The nonlinear extremely large-amplitude oscillation of a cantilever subject to motion constraints is examined for the first time. In order to be able to model the large-amplitude oscillations accurately, the equation governing the cantilever centerline rotation is derived. This allows for analyzing motions of very large amplitude even when tip angle is larger than π/2. The Euler–Bernoulli beam theory is employed along with the centerline inextensibility assumption, which results in nonlinear inertial terms in the equation of motion. The motion constraint is modeled as a spring with a large stiffness coefficient. The presence of a gap between the motion constraint and the cantilever causes major difficulties in modeling and numerical simulations, and results in a nonsmooth resonance response. The final form of the equation of motion is discretized via the Galerkin technique, while keeping the trigonometric functions intact to ensure accurate results even at large-amplitude oscillations. Numerical simulations are conducted via a continuation technique, examining the effect of various system parameters. It is shown that the presence of the motion constraints widens the resonance frequency band effectively which is particularly important for energy harvesting applications.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3