Two Closely Spaced Aneurysms of the Supraclinoid Internal Carotid Artery: How Does One Influence the Other?

Author:

Sunderland Kevin1,Huang Qinghai2,Strother Charles3,Jiang Jingfeng4

Affiliation:

1. Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931

2. Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China

3. Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705

4. Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931 e-mail:

Abstract

The objective of this study was to use image-based computational fluid dynamics (CFD) techniques to analyze the impact that multiple closely spaced intracranial aneurysm (IAs) of the supra-clinoid segment of the internal carotid artery (ICA) have on each other's hemodynamic characteristics. The vascular geometry of fifteen (15) subjects with 2 IAs was gathered using a 3D digital subtraction angiography clinical system. Two groups of computer models were created for each subject's vascular geometry: both IAs present (model A) and after removal of one IA (model B). Models were separated into two groups based on IA separation: tandem (one proximal and one distal) and adjacent (aneurysms directly opposite on a vessel). Simulations using a pulsatile velocity waveform were solved by a commercial CFD solver. Proximal IAs altered flow into distal IAs (5 of 7), increasing flow energy and spatial-temporally averaged wall shear stress (STA-WSS: 3–50% comparing models A to B) while decreasing flow stability within distal IAs. Thus, proximal IAs may “protect” a distal aneurysm from destructive remodeling due to flow stagnation. Among adjacent IAs, the presence of both IAs decreased each other's flow characteristics, lowering WSS (models A to B) and increasing flow stability: all changes statistically significant (p < 0.05). A negative relationship exists between the mean percent change in flow stability in relation to adjacent IA volume and ostium area. Closely spaced IAs impact hemodynamic alterations onto each other concerning flow energy, stressors, and stability. Understanding these alterations (especially after surgical repair of one IA) may help uncover risk factor(s) pertaining to the growth of (remaining) IAs.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3