On the Natural Convection in a Cavity With a Cooled Top Wall and Multiple Protruding Heaters

Author:

Desai C. P.1,Vafai K.1,Keyhani M.2

Affiliation:

1. Department of Mechanical Engineering, The Ohio State University, Columbus, OH 43210

2. Department of Mechanical Engineering, University of Tennessee at Knoxville, Knoxville, TN

Abstract

Natural convection in rectangular enclosures with multiple protruding heaters mounted on one side wall is of relevance to the cooling of electronic equipment. In some configurations, the top wall behaves as the heat sink while the opposing vertical wall and the bottom wall are insulated. The present work examines the peculiarities introduced in the natural convection process for such configurations. The enclosure considered had five protrusions, cavity width to heater length ratio of 1.2 and cavity height to heater length ratio of 11. It is shown that for such configurations, a stable flow exists only at lower Rayleigh numbers and that above a certain critical Rayleigh number, only quasi-steady solutions exist. At low Rayleigh numbers(Ra* ≤ 1.5 × 107), the flow is stable and characterized by the presence of a primary flow cell and a counter-rotating secondary cell at the top of the enclosure. At higher Rayleigh numbers (Ra* ≥ 3 × 108), however, the isothermal top wall causes a periodic flow pattern to develop within the enclosure. Several interesting characteristics of the flow and temperature fields are presented. Results compared with previous experimental and numerical work are found to be in good agreement.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3