Affiliation:
1. Center for Noise and Vibration Control, Department of Mechanical Engineering, KAIST, Science Town, Daejeon, 305-701, Korea
Abstract
For an efficient design of hydraulic mounts, it is most important to have a good mathematical model available, which must be simple yet capable of representing dynamic characteristics of the hydraulic mounts accurately. Under high amplitude excitations in the low-frequency range, the hydraulic mounts show strongly frequency-dependent stiffness and damping characteristics, which are related with so-called inertia track dynamics. Since nonlinear damping models based on fluid mechanics are typically used to predict the dynamic characteristics of the hydraulic mounts, relations between various design variables, such as geometry of the inertia track, and resultant stiffness and damping characteristics are understood only by tedious numerical computations. In this paper, the use of an equivalent viscous damping model—derived from a nonlinear model and represented in terms of design variables in an explicit manner—is proposed and, based on the equivalent linear model, are presented simple as well as very useful formulas for an efficient design of the hydraulic mounts.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献