Effect of Axial Clearance on the Efficiency of a Shrouded Centrifugal Pump

Author:

Lei Cao1,Yiyang Zhang2,Zhengwei Wang1,Yexiang Xiao1,Ruixiang Liu3

Affiliation:

1. State Key Laboratory of Hydroscience and Engineering and Department of Thermal Engineering, Tsinghua University, Beijing 100084, China e-mail:

2. China Water Resources Beifang Investigation, Design and Research Co. Ltd., Tianjin 300222, China e-mail:

3. CCCC Tianjin Dredging Co. Ltd., Binhai New Area, Tianjin 300042, China e-mail:

Abstract

Clearance always exists between the rotating impeller shrouds and the stationary casing covers in shrouded centrifugal pumps, which affects the pump internal flow and performance. Model tests were conducted for a shrouded centrifugal pump with back blades on the front shroud, and the performance parameters were obtained for three different impeller axial positions. Adjusting the impeller axial position can change the axial size of both the front and back clearances simultaneously. The results show that a tiny variation of the axial clearance size can substantially change the pump performance. A large front clearance reduces the pump efficiency and head with little change in the shaft power. Numerical simulations for a wide range of operating conditions for the three models with different impeller axial positions using the Reynolds-Averaged Navier–Stokes (RANS) with shear stress transport (SST) k–ω turbulence model agree well with the experimental results. The numerical results show how the clearance flow interfere with the main flow as the axial clearance is varied. The change in the pump hydraulic efficiency, volumetric efficiency, and mechanical efficiency was analyzed for various clearances. The hydraulic efficiency is the lowest one of the three kinds of efficiency and changes dramatically as the flow rate increases; thus, the hydraulic efficiency plays a decisive role in the pump performance. The volumetric efficiency is most sensitive to the axial clearance, which obviously decreases as the front clearance is increased. Therefore, the volumetric efficiency is the key factor for the change of the gross efficiency as the axial clearance changes. The mechanical loss varies little with changes in both axial clearance and flow rate so the mechanical efficiency can be regarded as a constant. The effect of axial clearances on the efficiency of shrouded centrifugal pumps should be considered to enable more efficient designs.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3