Measurements of Wave Induced Hull Girder Vibrations of an Ore Carrier in Different Trades

Author:

Storhaug Gaute1,Moe Erlend2,Holtsmark Gabriel3

Affiliation:

1. Hydrodynamics, Structures and Stability, DNV, Veritasveien 1, 1322 Hoevik, Norway; CeSOS, NTNU, Marine Technology Centre, 7491 Trondheim, Norway

2. Bulk Carriers and Container Ships, DNV, Veritasveien 1, 1322 Hoevik, Norway

3. Class Services and Newbuilding, DNV, Veritasveien 1, 1322 Hoevik, Norway

Abstract

Currently, the conventional wave loading is the only effect considered in fatigue assessment of ships. Det Norske Veritas (DNV) has recently confirmed that fatigue damage from wave induced vibrations may be of similar magnitude as from the conventional wave loading (Moe et al., 2005, RINA, International Conference, Design and Operation of Bulk Carriers, London, Oct. 18–19, pp. 57–85). A 40% contribution to the total fatigue damage in deck amidships is documented through extensive measurements onboard an ore carrier (the reference ship) trading in the North Atlantic. The effect of strengthening the vessel, i.e., increasing the natural frequency by 10%, is ineffective in reducing the relative magnitude of the vibration damage. The wave induced vibration, often referred to as whipping and/or springing, also contributes to fatigue damage for other ship types and trades (Moe et al.). This paper considers the effect of trade. It indicates when the wave induced vibrations should be accounted for in the design phase with respect to fatigue damage. A second ore carrier (the target ship) is monitored with respect to the wave induced hull vibrations and their fatigue effect. Stress records from strain sensors located in the midship deck region are supplemented by wave radar and wind records. Based on the measurements, the vibration stress response and associated vibration induced fatigue damage are determined for varying wind and wave forces and relative headings. While the reference ship operates in the Canada to Europe ore trade, the target ship trades between Canada and Europe, Brazil and Europe, and South Africa and Europe. A procedure is suggested by Moe et al. to estimate the long term fatigue damage for different trades by utilizing the measured data from the reference ship. The vibration and wave damage are considered separately. By comparing the measured wave environment and the DNV North Atlantic scatter diagram, the effect of routing indicated a reduction of the fatigue damage by one-third. A slightly revised procedure is applied to estimate the effect of trade for the second ore carrier, comparing the long term predicted fatigue damage with the measured fatigue damage. The importance of trade is confirmed. However, the relative contribution of the vibration damage is shown to increase in less harsh environments. The target ship vibrates more than the reference ship for the same trade and Beaufort strength. The vibration damage of the target ship constitutes 56% of the total measured damage, and the high natural frequency is observed to have no significant effect.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference13 articles.

1. Full Scale Measurements of the Wave Induced Hull Girder Vibrations of an Ore Carrier Trading in the North Atlantic;Moe

2. Springing/Whipping Response of a Large Ocean Going Vessel—A Comparison Between Numerical Simulations and Full Scale Measurements;Storhaug

3. Improved Passage Planning Using Weather Forecasting, Maneuvering Guidance and Instrumentation Feedback;Lacey;Mar. Technol. Soc. J.

4. Experimental Study of Springing Vibration in Waves;Lopes

5. Gran, S. , 1976, “Full Scale Measurements of Springing Contribution to Extreme Stress and Fatigue in a Large Tanker,” DNV Technical Report No. 76-417.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3