Effect of Plastic Deformation on Occurrence of Abnormal Fracture During DWTT

Author:

Fujishiro Taishi1,Hara Takuya1,Aihara Shuji2

Affiliation:

1. Nippon Steel Corporation, Kimitsu, Chiba, Japan

2. The University of Tokyo, Tokyo, Japan

Abstract

Demand for natural gas using LNG and pipelines to supply the world’s gas markets is increasing. Under the large demand for high-strength linepipe, crack arrestability is one of the most important properties. DWTT (Drop Weight Tear Test) is the major test method for evaluating crack arrestability. Generally, a DWTT shear area of 85% or higher is required as the acceptance criteria, such as those of the API (American Petroleum Institute). In high-toughness linepipe steels, the abnormal fracture frequently occurs in DWTT. Abnormal fracture is defined as a cleavage fracture on the hammer side. However, the mechanism for occurrence of the abnormal fracture during DWTT has not been fully clarified. This paper describes the effect of plastic deformation on occurrence of abnormal fracture during DWTT using various steels with different microstructures. Each DWTT was carried out at the same test temperature using 20 mm plates with approximately the same tensile strength. This paper describes the deformation during DWTT, which consists of deformation caused by hammer impact, bending compression, and bending tension. The deformation due to the impact of the hammer during DWTT on a 20 mm plate was limited, and the location affected by the hammer impact did not correspond to that where abnormal fracture occurred. Moreover, the equivalent plastic strain from bending deformation was dominant as compared with that of hammer impact regardless of the microstructure. This suggests that abnormal fracture occurred by exceeding the critical equivalent plastic strain due to the bending deformation.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3