Nonlinear Dynamic Analyses of a Gas Turbine Blade for Attainment of Reliable Shroud Coupling

Author:

Szwedowicz J.1,Slowik S.2,Mahler A.2,Hulme C. J.2

Affiliation:

1. ABB Turbo Systems, Ltd., Baden, Switzerland

2. ALSTOM (Switzerland), Ltd., Baden, Switzerland

Abstract

The major objective of this paper is to evaluate a stand-point for integral shroud coupling, regarding the complex problem of nonlinear resonance vibrations of a shrouded blade with friction and impact effects. Following the load sequence in the start-up and further uploading to base load, a nonlinear cyclic FE static computation with friction forces at the shroud interface delivers contact stress results essential for assessment of a reliable shroud coupling. The FE refinement study at the shroud interface proves the reliability of the computed eigenfrequencies with respect to the harmonic engine excitation. Using nonlinear dynamic simulations of the shroud connection with friction forces, contact stiffness, surface roughness and impacts, the decoupling between the static and dynamic motions at the shroud interface is demonstrated. Based on the one-dimensional description of vibration characteristics for the shrouded blade, the resulting normal and tangential contact stiffness are evaluated from the computed 3D FE nodal diameter diagrams. The excitation forces acting on the blade are determined with the stimulus concept, in which an empirical factor is estimated from pulsation measured in the combustor chamber over the frequency range of the blade vibrations. The entire process is illustrated for the redesigned Z-lock interface on the shroud of a gas turbine stage whose contact surfaces had shown fretting problems. The numerical results confirm possible contact failures for the old shroud configuration. The blade calculated with the modified shroud connection shows numerically, stable dynamic behavior and will therefore prevent further fretting contact problems.

Publisher

ASMEDC

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3