Nonlinear Components of Ship Wake Waves

Author:

Soomere Tarmo1

Affiliation:

1. Centre for Nonlinear Studies, Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn, Estonia

Abstract

Nonlinear components of wakes from large high-speed ships at times carry a substantial part of the wake energy and behave completely differently compared to the classical Kelvin wave system. This overview makes an attempt to summarize the descriptions of nonlinear parts of a ship’s wake. For completeness, also the basic properties of the Kelvin wake are sketched. The central topic is the generation of solitons by ship motion both in channels and in unbounded sea areas. The discussion is mostly limited to disturbances on the surface of nonstratified water. The optional nonlinear components of the ship wake such as the very narrow V-like wake components, packets of monochromatic waves, ship-generated depression areas, and supercritical bores are also discussed. Specific features of solitonic ship waves and their interactions have numerous applications in naval and coastal engineering, and in adjacent areas of applied mechanics. An overview of the practical use of certain properties of phase shifts, and particularly high wave humps occurring during Mach reflection and nonlinear interaction of solitons in decreasing the wave resistance at supercritical speeds and in the freak wave theory, is also presented. The final part of the paper describes the results of studies of far-field properties of nonlinear wakes and possible consequences of the increase of local hydrodynamic activity. There are 263 references cited in this review article.

Publisher

ASME International

Subject

Mechanical Engineering

Reference267 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3