The Structure of Wall-Impinging Jets: Computed Versus Theoretical and Measured Results

Author:

Song Lijun1,Abraham John1

Affiliation:

1. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

Abstract

In this work, the structure of computed wall-impinging gas jets is compared with theoretical and experimental results presented in the literature. The computational study employs the k-ε model to represent turbulence. Wall functions are employed to model momentum transfer at the walls. The computed penetration and growth rate of the jet agree with measured and analytical results within 10%. Computed radial velocities in the developed region of the wall jet are self-similar as found in prior experimental and analytical works. The computed radial velocity profile and quantitative values in the outer layer of the jet and the location of the maximum radial velocity agree within 5% with measurements and analytical results. Greater quantitative differences are found in the near-wall region. Mixing characteristics of a wall-impinging jet are compared with those of a round free jet. The wall-impinging jet mixes slower than the round free jet.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3