Ramp-Load Dynamics of Proximity Recording Air Bearing Sliders in Magnetic Hard Disk Drive

Author:

Hu Yong1

Affiliation:

1. Quinta Corporation, 1870 Lundy Avenue, San Jose, CA 95131-1826

Abstract

The revival of dynamic load/unload (L/UL) technology forces us to rethink the air bearing design philosophy, which has traditionally been established for contact start/stop applications. Reliably loading a slider onto a full-rotating disk imposes its own requirements on the slider air bearing designs. This paper addresses the unique design requirements of dynamic L/UL technology, through an investigation of the air bearing characteristics of two proximity recording sliders during a dynamic load process. While the slider/disk contact force is employed as a key indicator of the reliability of the dynamic load mechanism, the air bearing suction force and squeeze flow effect are used to characterize the slider’s dynamics during loading. The effects of the slider’s loading velocity, pitch and roll static attitudes on its dynamic load performance are simulated. In comparison to the positive pressure air bearings, both the enlarged air bearing surface and shallowly recessed cavities of the subambient pressure air bearing sliders generate more squeeze flow, resulting in a rapid development of the air bearing lifting force at a higher attitude. This often leads to a more reliable dynamic load performance. The impact of the air bearing suction force on the slider’s dynamics during loading is determined by the suction force center. A towards-leading-edge suction force not only induces a negative pitch motion during the early stage, but also prolongs the pitch-up process. Both effects can result in a head crash for the slider with a large negative pitch static attitude. In summary, the subambient pressure air bearing sliders that feature the enlarged leading air bearing surface and towards-trailing-edge suction cavities with small recess depth offer a fast pitch-up load performance.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3