Lid-Driven Square Cavity Flow: A Benchmark Solution With an 8192 × 8192 Grid

Author:

Marchi Carlos Henrique1,Santiago Cosmo Damião2,Carvalho, Jr. Carlos Alberto Rezende de3

Affiliation:

1. Laboratory of Numerical Experimentation (LENA), Department of Mechanical Engineering (DEMEC), Federal University of Paraná (UFPR), Caixa Postal 19040, Curitiba, PR 81531-980, Brazil

2. Federal University of Technology—Paraná (UTFPR), Rua Marcílio Dias, 635 - Jardim Paraíso, CEP 86812-460, Apucarana, PR, Brazil

3. Post-Graduate Program in Numerical Methods in Engineering (PPGMNE), Federal University of Paraná (UFPR), Curitiba, PR 81531-980, Brazil

Abstract

Abstract The incompressible steady-state fluid flow inside a lid-driven square cavity was simulated using the mass conservation and Navier–Stokes equations. This system of equations is solved for Reynolds numbers of up to 10,000 to the accuracy of the computational machine round-off error. The computational model used was the second-order accurate finite volume (FV) method. A stable solution is obtained using the iterative multigrid methodology with 8192 × 8192 volumes, while degree-10 interpolation and Richardson extrapolation were used to reduce the discretization error. The solution vector comprised five entries of velocities, pressure, and location. For comparison purposes, 65 different variables of interest were chosen, such as velocity profile, its extremum values and location, and extremum values and location of the stream function. The discretization error for each variable of interest was estimated using two types of estimators and their apparent order of accuracy. The variations of the 11 selected variables are shown across 38 Reynolds number values between 0.0001 and 10,000. In this study, we provide a more accurate determination of the Reynolds number value at which the upper secondary vortex appears. The results of this study were compared with those of several other studies in the literature. The current solution methodology was observed to produce the most accurate solution till date for a wide range of Reynolds numbers.

Publisher

ASME International

Subject

Computational Theory and Mathematics,Computer Science Applications,Modeling and Simulation,Statistics and Probability

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3