Computational Study of the Effects of Shock Waves on Film Cooling Effectiveness

Author:

Zhang C. X.-Z.1,Hassan I.1

Affiliation:

1. Concordia University, Montréal, QC, H3G 1M8, Canada

Abstract

The performance of a louver cooling scheme on a transonic airfoil has been studied numerically in this paper. Film cooling holes are located near the passage throat. The Mach number at the location of the jet exit is close to unity. A comparison of film cooling effectiveness between numerical prediction and experimental data for a circular hole shows that the numerical procedures are adequate. In addition to the shock-wave effects and compressibility, curvature effect was also studied by comparing cooling effectiveness on the airfoil surface with that on a flat plate. Substantially higher cooling effectiveness for the louver cooling scheme on the airfoil was predicted at blowing ratios below 1 in comparison to other cooling configurations. At higher blowing ratios than 2 the advantages of the louver cooling scheme become less obvious. It was also found that for the same cooling configuration the cooling effectiveness on the transonic airfoil is slightly higher than that on a flat plate at moderately low blowing ratios below 1. At high blowing ratios above 2 when the oblique shock becomes detached from the leading edge of the hole exits, dramatic reduction in cooling effectiveness occurs as a result of boundary layer separation due to the strong shock waves. A coolant-blockage and shaped-wedge similarity was proposed and found to be able to qualitatively explain this phenomenon satisfactorily.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3