Harvesting Nanoscale Thermal Radiation Using Pyroelectric Materials

Author:

Fang Jin1,Frederich Hugo1,Pilon Laurent1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Henri Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90095-1597

Abstract

Pyroelectric energy conversion offers a way to convert waste heat directly into electricity. It makes use of the pyroelectric effect to create a flow of charge to or from the surface of a material as a result of heating or cooling. However, an existing pyroelectric energy converter can only operate at low frequencies due to a relatively small convective heat transfer rate between the pyroelectric materials and the working fluid. On the other hand, energy transfer by thermal radiation between two semi-infinite solids is nearly instantaneous and can be enhanced by several orders of magnitude from the conventional Stefan–Boltzmann law as the gap separating them becomes smaller than Wien’s displacement wavelength. This paper explores a novel way to harvest waste heat by combining pyroelectric energy conversion and nanoscale thermal radiation. A new device was investigated numerically by accurately modeling nanoscale radiative heat transfer between a pyroelectric element and hot and cold plates. Silica absorbing layers on top of every surface were used to further increase the net radiative heat fluxes. Temperature oscillations with time and performances of the pyroelectric converter were predicted at various frequencies. The device using 60/40 porous poly(vinylidene fluoride–trifluoroethylene) achieved a 0.2% efficiency and a 0.84 mW/cm2 electrical power output for the cold and hot sources at 273 K and 388 K, respectively. Better performances could be achieved with 0.9Pb(Mg1/3Nb2/3)–0.1PbTiO3 (0.9PMN-PT), namely, an efficiency of 1.3% and a power output of 6.5 mW/cm2 between the cold and hot sources at 283 K and 383 K, respectively. These results are compared with alternative technologies, and suggestions are made to further improve the device.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference61 articles.

1. Lawrence Livermore National Laboratory, 2008, “U.S. Energy Flow Trends—2002,” https://eed.llnl.gov/flow/02flow.php

2. Ferroelectric Conversion of Heat to Electrical Energy—A Demonstration;Olsen;J. Energy

3. Cascaded Pyroelectric Energy Converter;Olsen;Ferroelectrics

4. A Pyroelectric Energy Converter Which Employs Regeneration;Olsen;Ferroelectrics

5. High-Efficiency Direct Conversion of Heat to Electrical Energy-Related Pyroelectric Measurements;Olsen;Ferroelectrics

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3