Affiliation:
1. Fellow ASME Mechanical Engineering Department, Rochester Institute of Technology, 76 Lomb Memorial Drive, Rochester, NY 14623 e-mail:
Abstract
Understanding heat transfer mechanisms is crucial in developing new enhancement techniques in pool boiling. In this paper, the available literature on fundamental mechanisms and their role in some of the outstanding enhancement techniques is critically evaluated. Such an understanding is essential in our quest to extend the critical heat flux (CHF) while maintaining low wall superheats. A new heat transfer mechanism related to macroconvection is introduced and its ability to simultaneously enhance both CHF and heat transfer coefficient (HTC) is presented. In the earlier works, increasing nucleation site density by coating a porous layer, providing hierarchical multiscale structures with different surface energies, and nanoscale surface modifications were some of the widely used techniques which relied on enhancing transient conduction, microconvection, microlayer evaporation, or contact line evaporation mechanisms. The microconvection around a bubble is related to convection currents in its immediate vicinity, referred to as the influence region (within one to two times the departing bubble diameter). Bubble-induced convection, which is active beyond the influence region on a heater surface, is introduced in this paper as a new macroconvection mechanism. It results from the macroconvection currents created by the motion of bubbles as they grow and depart from the nucleating sites along a specific trajectory. Directing these bubble-induced macroconvection currents so as to create separate vapor–liquid pathways provides a highly effective enhancement mechanism, improving both CHF and HTC. The incoming liquid as well as the departing bubbles in some cases play a major role in enhancing the heat transfer. Significant performance improvements have been reported in the literature based on enhanced macroconvection contribution. One such microstructure has yielded a CHF of 420 W/cm2 with a wall superheat of only 1.7 °C in pool boiling with water at atmospheric pressure. Further enhancements that can be expected through geometrical refinements and integration of different techniques with macroconvection enhancement mechanism are discussed here.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Reference63 articles.
1. Discussion of Heat Transfer From a Platinum Wire Submerged in Water;Rocz. Chem.,1926
2. The Maximum and Minimum Values of the Heat Q Transmitted From Metal to Boiling Water Under Atmospheric Pressure;J. Jpn. Soc. Mech. Eng.,1934
3. A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids,1951
4. The Measurement of Rapid Surface Temperature Fluctuations During Nucleate Boiling of Water;AIChE J.,1961
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献