Experimental Investigation of Local and Average Heat Transfer Coefficients Under an Inline Impinging Jet Array, Including Jets With Low Impingement Distance and Inclined Angle

Author:

Li Weihong1,Xu Minghe2,Ren Jing3,Jiang Hongde1

Affiliation:

1. Department of Thermal Engineering, Gas Turbine Institute, Tsinghua University, Beijing 100086, China e-mail:

2. Department of Thermal Engineering, Tsinghua University, Beijing 100086, China e-mail:

3. Mem. ASME Department of Thermal Engineering, Gas Turbine Institute, Tsinghua University, Beijing 100086, China e-mail:

Abstract

Comprehensive impingement heat transfer coefficients data are presented with varied Reynolds number, hole spacing, jet-to-target distance, and hole inclination utilizing transient liquid crystal. The impingement configurations include: streamwise and spanwise jet-to-jet spacing (X/D, Y/D) are 4∼8 and jet-to-target plate distance (Z/D) is 0.75∼3, which composed a test matrix of 36 different geometries. The Reynolds numbers vary between 5,000 and 25,000. Additionally, hole inclination pointing to the upstream direction (θ: 0 deg∼40 deg) is also investigated to compare with normal impingement jets. Local and averaged heat transfer coefficients data are presented to illustrate that (1) surface Nusselt numbers increase with streamwise development for low impingement distance, while decrease for large impingement distance. The increase or decrease variations are also influenced by Reynolds number, streamwise and spanwise spacings. (2) Nusselt numbers of impingement jets with inclined angle are similar to those of normal impingement jets. Due to the increase or decrease variations corresponding to small or large impingement distance, a two-regime-based correlation, based on that of Florschuetz et al., is developed to predict row-averaged Nusselt number. The new correlation is capable to cover low Z/D∼0.75 and presents better prediction of row-averaged Nusselt number, which proves to be an effective impingement design tool.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3